5x+3x^2=30

Simple and best practice solution for 5x+3x^2=30 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5x+3x^2=30 equation:


Simplifying
5x + 3x2 = 30

Solving
5x + 3x2 = 30

Solving for variable 'x'.

Reorder the terms:
-30 + 5x + 3x2 = 30 + -30

Combine like terms: 30 + -30 = 0
-30 + 5x + 3x2 = 0

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
-10 + 1.666666667x + x2 = 0

Move the constant term to the right:

Add '10' to each side of the equation.
-10 + 1.666666667x + 10 + x2 = 0 + 10

Reorder the terms:
-10 + 10 + 1.666666667x + x2 = 0 + 10

Combine like terms: -10 + 10 = 0
0 + 1.666666667x + x2 = 0 + 10
1.666666667x + x2 = 0 + 10

Combine like terms: 0 + 10 = 10
1.666666667x + x2 = 10

The x term is 1.666666667x.  Take half its coefficient (0.8333333335).
Square it (0.6944444447) and add it to both sides.

Add '0.6944444447' to each side of the equation.
1.666666667x + 0.6944444447 + x2 = 10 + 0.6944444447

Reorder the terms:
0.6944444447 + 1.666666667x + x2 = 10 + 0.6944444447

Combine like terms: 10 + 0.6944444447 = 10.6944444447
0.6944444447 + 1.666666667x + x2 = 10.6944444447

Factor a perfect square on the left side:
(x + 0.8333333335)(x + 0.8333333335) = 10.6944444447

Calculate the square root of the right side: 3.270236145

Break this problem into two subproblems by setting 
(x + 0.8333333335) equal to 3.270236145 and -3.270236145.

Subproblem 1

x + 0.8333333335 = 3.270236145 Simplifying x + 0.8333333335 = 3.270236145 Reorder the terms: 0.8333333335 + x = 3.270236145 Solving 0.8333333335 + x = 3.270236145 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.8333333335' to each side of the equation. 0.8333333335 + -0.8333333335 + x = 3.270236145 + -0.8333333335 Combine like terms: 0.8333333335 + -0.8333333335 = 0.0000000000 0.0000000000 + x = 3.270236145 + -0.8333333335 x = 3.270236145 + -0.8333333335 Combine like terms: 3.270236145 + -0.8333333335 = 2.4369028115 x = 2.4369028115 Simplifying x = 2.4369028115

Subproblem 2

x + 0.8333333335 = -3.270236145 Simplifying x + 0.8333333335 = -3.270236145 Reorder the terms: 0.8333333335 + x = -3.270236145 Solving 0.8333333335 + x = -3.270236145 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.8333333335' to each side of the equation. 0.8333333335 + -0.8333333335 + x = -3.270236145 + -0.8333333335 Combine like terms: 0.8333333335 + -0.8333333335 = 0.0000000000 0.0000000000 + x = -3.270236145 + -0.8333333335 x = -3.270236145 + -0.8333333335 Combine like terms: -3.270236145 + -0.8333333335 = -4.1035694785 x = -4.1035694785 Simplifying x = -4.1035694785

Solution

The solution to the problem is based on the solutions from the subproblems. x = {2.4369028115, -4.1035694785}

See similar equations:

| x^2+x(x+3)=-2x+18 | | x^2+x(x+3)=-1x+18 | | -4.905x^2+180x-20=0 | | X^2-2v=3 | | (2w-3)(1+w)=0 | | 4k= | | Ln(3x-1)+ln(x-5)=ln*5 | | k+12= | | 2x^2-2sqrt(2x)-1=0 | | C^2+2x-63=0 | | 3x+4-5x+2=8 | | 10x+3y+2x-3y= | | 9-3(n-50)=30 | | 802log*20=x | | 802log(20)=x | | .00983log(20)=x | | 8x+20=6x+40 | | 1+(1+r)(1+r)=2 | | 20=18-X | | (1+r)(1+r)=2 | | f(2)=6-3x | | f(0)=6-3x | | f(-6)=6-3x | | LN(801.4)=x | | 20log(801.84)=x | | 4x+12=18-12x | | 7n^2-84n+252=0 | | 45-10u=32 | | 0.8y=-x+16 | | x+4=y-1 | | 2x-3y=o | | x^3+ln(x+1)=40 |

Equations solver categories